Mount Charles School Fractions Objective. K-Knowledge. S-Skills							
	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Whole Equal One half	Halves Half Quarter, two quarters Equal parts, four equal parts Two halves	```whole equal equal parts 12 fraction denominator fraction bar numerator 1/4 third 1/3 unit fraction non-unit fraction equivalent, equivalence 3/4```	tenth interval mixed number equivalent fraction inequality statement numerator denominator unit fraction, non-unit fraction compare and order	hundredth simplest fraction simplify improper fraction decimal decimal point equivalent decimals and fractions	common denominator thousandth one decimal place two decimal places Per cent (\%) percentage Proper fractions, improper fractions, mixed numbers Half, quarter, fifth, two fifths, four fifths Ratio, proportion	common factor highest common factor lowest common multiple (LCM) lowest common denominator decree of accuracy simplify
sdəłs ןеио!łэeдf u! 8u!łunoว			Pupils should count in fractions up to 10, starting from any number and using the $1 / 2$ and 2/4 equivalence on the number line (Non Statutory Guidance) K - whole numbers can be split into smaller parts K- the name of those parts depends on how many there are K- how half and quarter are represented	count up and down in tenths K- each part of a whole number which has been split into ten is called a tenth K - how a tenth is represented S - counting up and down in tenths	count up and down in hundredths K - how a hundredth is represented S - counting up and down in hundredths		

					compare numbers with the same number of decimal places up to two decimal places K - place value of numbers with up to two decimal places K - size of decimal number depends on value of the digits not the number of digits after the decimal point K - hundredths are smaller than tenths K - how to compare numbers using <, > and $=$ S - compare numbers with the same number of decimal places up to two decimal places.	read, write, order and compare numbers with up to three decimal places K- place value of numbers with up to three decimal places K - how to group numbers to read them K - decimal numbers are read as singular digit rather than a group of numbers K - Thousandths are smaller than hundredths K - size of decimal number depends on value of the digits not the number of digits after the decimal point S - read and write numbers with up to three decimal places S - to order and compare numbers with up to three decimal places	identify the value of each digit in numbers given to three decimal places K - place value of numbers given to three decimal places S - identify the value of each digit in a number given to three decimal places

					round decimals with one decimal place to the nearest whole number K - how a whole number can be broken down into tenths S- place decimal numbers on number line S - round decimals with one decimal place to the nearest whole number	round decimals with two decimal places to the nearest whole number and to one decimal place K - how tenths can be broken down into hundredths K - ordering decimals S - round decimals with two decimal places to the nearest whole number and to one decimal place.	solve problems which require answers to be rounded to specified degrees of accuracy K - real-life situations where rounding decimals is appropriate S - understanding the knowledge and skills required to solve the problem S-rounding any number to a specified degree of accuracy
			write simple fractions e.g. ${ }^{1} / 2$ of $6=3$ and recognise the equivalence of ${ }^{2} / 4$ and $1 / 2$. K - the denominator denotes how many groups the number/object is split into K - the numerator denotes how many of the groups there are	recognise and show, using diagrams, equivalent fractions with small denominators K - how to represent a fraction with a diagram K - to find equivalent fractions the diagrams drawn to show the fractions must be the same	recognise and show, using diagrams, families of common equivalent fractions K - there can be more than one equivalent fraction S - recognise families of common equivalent fractions S - show, using diagrams, families of common	identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths K - multiples of numbers K - how to find equivalent fractions using multiples K - how to read and represent tenths and hundredths	use common factors to simplify fractions; use common multiples to express fractions in the same denomination K - what a factor and common factor is K - how to find common factors of a number K - what a common multiple is K - how to find common multiples

$\begin{aligned} & \text { D } \\ & \text { 를 } \end{aligned}$				add and subtract fractions with the same denominator within one whole (e.g. $5 / 7+1 / 7={ }_{7}^{6} / 7$ K - adding and subtracting mentally K - understand the denominator shows how many the whole is split into. K - when adding and subtracting fractions why the denominator does not change S- add and subtract fractions with the same denominator within one whole	add and subtract fractions with the same denominator K - the numerator can add to more than the denominator K - that if the numerator is bigger than the denominator you have more than a whole. S - add and subtract fractions with the same denominator.	add and subtract fractions with the same denominator and multiples of the same number K - recognise equivalent fractions K - simplify fractions. S - add and subtract fractions with multiples of the same number. recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > 1 as a mixed number (e.g. $\left.{ }^{2} / 5+4 / /_{5}=6 / 5=11 / 5\right)$ K - mixed number fractions involves a whole number and fraction K - improper fraction is where the numerator is larger than the denominator. K - how mixed number and	add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions K - how to find equivalent fractions S- - add fractions with different denominators and mixed numbers using the concept of equivalent fractions. S -and subtract fractions with different denominators and mixed numbers using the concept of equivalent fractions. S - add and subtract fractions with mixed numbers S-recognising when finding equivalent fractions is appropriate in order to add and subtract fractions

