\cdots

$$
3 \times 2=6
$$

HELLO!
Today we are going to do revision on multiplication and division 2

Arithmetic Warm Up Add and subtract large numbers

 Add and subtract large numbers1. $82945+234852=$ \square

$$
\begin{array}{r}
234852 \\
+\quad 82945
\end{array}
$$

482852 - 79465

$$
\text { 2. } 482852-79465=\square
$$

\qquad

Revision on long and short multiplication and division

First we are going to revise:

Q Long multiplication
§ Order of operations (BIDMAS)

Revision: Long multiplication

Question 1

Complete

What do you notice?	Write the two missing digits to make this long multiplication correct.	What do you know?
	$7 \quad \Delta \quad \Delta$	How could you extend the question?
	624	

Question 2

Complete

Q What do you notice?	Maria bakes cakes and sells them in bags. She uses this formula to work out how much to charge for one bag of cakes. $\text { Cost }=\text { number of cakes } \times 27 p+15 p \text { for the bag }$ How much will a bag of 12 cakes cost?	What do you know?
$\int_{\begin{array}{c} \text { can you } \\ \text { show your } \\ \text { working out? } \end{array}}^{\text {an }}$		How could you extend the question?
	$£$	

Revision: Order of operations

There is an agreed order of
operations for calculations

BIDMAS

Brackets
Indices
Division or
Multiplication (left to right)
Addition or
Subtraction (left to right)
'Indices' are powers, for example, 2^{3} or 4^{2}

Work these out:
a)
$5 \times 4-2 \times 3+16 \div 4=$
b) $\quad 3^{3}+\left(5 \times 3-2^{2}\right)=$

Question 4

Complete

Let's review:

\bigcirc
can use long multiplication to multiply 2-digit numbers by 2-digit numbers

§
I can use the correct order of operations to solve problems

Draw a circle around the smiley face to show how you feel about what we've just been doing.

Is there something you would like to go over before we move on?

Revision on long and short multiplication and division

Now we are going to revise:Short divisionLong division

๑
Know when you would use long or short division

Revision: Short division with remainders

$1 \times 4=4$
$2 \times 4=8$
$3 \times 4=12$
$4 \times 4=16$
$5 \times 4=20$
$6 \times 4=24$
$7 \times 4=28$
$8 \times 4=32$
$9 \times 4=36$

The remainder can also be
written as $\frac{2}{4}$ or $\frac{1}{2}$

Question 4

Complete

| OWhat do you
 notice? |
| :--- | :--- | :--- | :--- |

Revision: Long Division

1. Divide
2. Multiply
3. Subtract

$1 \times 13=13$
$2 \times 13=26$
$3 \times 13=39$
$4 \times 13=52$
$5 \times 13=65$

$1 3 \longdiv { 4 3 6 1 }$

THIRD SPACE

LEARNING

Worked out answer

335 r 6
 $1 3 \longdiv { 4 3 6 1 }$ 3900
 461
 390

$1 \times 13=13$
$2 \times 13=26$
$3 \times 13=39$
$4 \times 13=52$
$5 \times 13=65$

71
65
6

Question 5

Complete

QWhat do you notice?	Circle the numbers that represent the remainder after the division $328 \div 24$ $\begin{array}{lllll} \frac{1}{2} & \frac{2}{3} & 24 & 16 & \frac{16}{24} \end{array}$	What do you know?
\qquad		How could ? you extend the question?

Let's review:

๑
I can use the correct method for both short and long division

๑
I understand when it is beneficial to use long division rather than short division

Draw a circle around the smiley face to show how you feel about what we've just been doing.

Is there something you would like to go over before we move on?

